(—)-Δ9-Tetrahydrocannabinol Antagonizes the Peripheral Cannabinoid Receptor-mediated Inhibition of Adenylyl Cyclase

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(-)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase.

(-)-Delta9-Tetrahydrocannabinol ((-)-Delta9-THC) is the major active psychotropic component of the marijuana plant, Cannabis sativa. The membrane proteins that have been found to bind this material or its derivatives have been called the cannabinoid receptors. Two GTP-binding protein-coupled cannabinoid receptors have been cloned. CB1 or the neuronal cannabinoid receptor is found mostly in neur...

متن کامل

Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this sign...

متن کامل

Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms.

Increasing data indicate that brain endocannabinoid system plays a role in the effects of antidepressant medications. Here we examined the effect of in vivo exposure to the selective serotonin uptake inhibitor fluoxetine on cannabinoid type 1 (CB(1)) receptor density and functionality in the rat prefrontal cortex (PFC) and cerebellum. Long-term treatment with fluoxetine (10 mg/kg/day) enhanced ...

متن کامل

Dose-Related Differences in the Regional Pattern of Cannabinoid Receptor Adaptation and in Vivo Tolerance Development to Δ9- Tetrahydrocannabinol

Chronic treatment with Δ9-tetrahydrocannabinol (THC) produces tolerance to cannabinoid-mediated behaviors and region-specific adaptation of brain cannabinoid receptors. However, the relationship between receptor adaptation and tolerance is not well understood, and the dose-response relationship of THC-induced cannabinoid receptor adaptation is unknown. This study assessed cannabinoid receptor f...

متن کامل

Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB(1) cannabinoid receptor.

Many types of cells exhibit increased adenylyl cyclase (AC) activity after chronic agonist treatment of G(i/o)-coupled receptors. This phenomenon, defined as AC superactivation or sensitization, has mostly been studied for the opioid receptors and is implicated in opiate addiction. Here we show that this phenomenon is also observed on chronic activation of the CB(1) cannabinoid receptor. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biological Chemistry

سال: 1996

ISSN: 0021-9258

DOI: 10.1074/jbc.271.17.9902